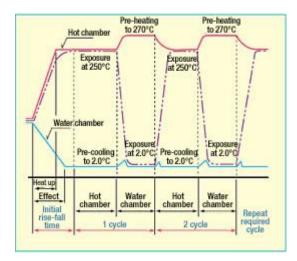
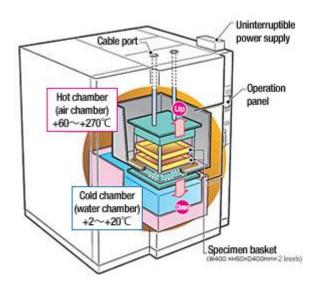


Air to Liquid Thermal Shock Chamber

With increased modularization and digitization, more electronic parts are used on automobiles in various locations. However, these parts are constantly exposured to high temperatures due to the heat generated by the engine and gears, and the parts are rapidly cooled down by water splashes from the road and rainwater. The developed "Air to Liquid Thermal Shock Chamber" is ideal for reliability and endurance testing of electronic parts exposured to such rapid thermal shocks. The cold chamber adopts a water chamber to apply the specimen to rapid thermal shock. It is impossible to achieve with an air to air thermal shock chamber, thereby creating a thermal shock environment that is more similar to the actual environment.

Unique thermal shock system


This unique thermal shock system uses different types of chambers for both the hot and cold chambers, an air chamber for the hot chamber and a water chamber for the cold chamber.


Labor-saving thermal shock testing

Conventional thermal shock tests using a water chamber were required manual operation into the water chamber. The specimen is transferred between chambers automatically; the testing can be performed simply by setting the program and reduces labor and time.

Temperature profile (example)

Device construction

Main specifications

Model			TSAB-50
Power supply			200 V AC, 3 ohm, 3W, 50/60 Hz (Supporting any power supply voltage as an option) (Power supply voltage fluctuation: ±10% of rated value)
Maximum load current			200 V AC 58A
Method			Two-zone method by transferring specimen up and down
Performance*1	Hot chamber	Temperature range	+60°C to +270°C
		Control range	+60°C to +270°C
		Temperature heat-up time	From ambient temperature to +270°C within 150 minutes
		Temperature fluctuation width	±0.5°C
	Water chamber*2	Temperature range	+2°C to +20°C

		Control range	+2°C to +20°C
		Temperature heat-up time	From +20°C to +2°C within 150 minutes
		Temperature fluctuation width	±2°C (reference value)
		Brine	Water and sewage (city water) only
Between chamber transfer time			Approx. 5 seconds (transfer between hot chamber and water chamber)
			Approx. 10 seconds (transfer between hot chamber and water chamber)
Dimensions, capacity, weight	Outside dimensions		W1600×H1892×D1500mm
	Test area dimensions		W400×H160×D400mm
	Test area load capacity		10kg
	Specimen basket dimensions		W400×H50×D400mm×2 levels
	Weight		Approx. 720 kg (not including weight of water)
	Water chamber (weight of water)		Water supply rate 250 L = water and sewage (city water)
Controller	Setting method		Interactive input using touch panel
	Display		Backlit LCD panel (color TFT)
	Temperature input		T thermocouple and K thermocouple (JIS C1602)
	Control method		PID control

	Emergency stop switch, specimen power supply control terminal, time signal, service
	plug socket, specimen transfer mechanism
Other information	at power cut, drawing cycle counter (w/o
	resetting function) ×1, cycle counter (w/
	reset function) $ imes 1$, integrating hour meter,
	lamp (status display, fault indication)

*1 Performance is without a specimen at an ambient temperature of +23°C.

*2 Indicates the performance of each individual chamber at a control point.

* The model is for operational purposes and may be changed after order. Thank you for your understanding.

Recommended products for customers viewing this product

TSA Series Thermal Shock Chamber

