Transducer Measurement Range

Transducer Type	Measuring Range(steel)	Indication Error	Using Mode
5MHz dual element narrowpulse transducer	1.2~225.0mm 3.0~100.0mm	H<10mm: ±0.05mm H≥10mm: ±(0.01+0.5%H)mm	Standard Echo-Echo
5MHz single element contacttransducer	5.0~225.00mm 5.0~100.00mm	H<10mm: ±0.05mm H≥10mm: ±(0.01+0.5%H)mm	Standard Echo-Echo
TSTU32 2MHz Double elementtransducer	3.0~300.00mm	H<10mm: ±0.1mm H≥10mm: ±(0.01+1%H)mm	Standard
1MHz single element contacttransducer	10~500.00mm	H<10mm: ±0.1mm H≥10mm: ±(0.01+1%H)mm	Standard
15MHz Single element delayblock transducer	3.0mm~20.0mm 0.25m~10.0mm	H<10mm: ±0.05mm H≥10mm: ±(0.01+0.5%H)mm	Interface-echo Echo-echo

Detecting Modes

- •The standard echo detection mode measures the thickness based on the time interval between the excitation pulse and the first back wall echo. User can measure uncoated materials in this mode.
- •Automatic echo-echo detection mode allows thickness measurement of materials with paint or coating because the time interval between two successive back-wall echoes eliminate paint or coating thickness.
- Paint thickness measurement can simultaneously display layer thickness and substrate thickness.
- •The instrument includes three detection modes (Mode 1, Mode 2, and Mode 3)
 - Mode 1: Measures the time interval between the main pulse signal and the first back-wall echo with direct contact transducer.
 - Mode 2: Measure the time interval between the interface echo (or delay line echo) and the first back-wall echo with a delay line or immersion transducer.
 - Mode 3: Measure the time interval between two successive back-wall echoes with a delay line or a immersion transducer.

Measuring Mode	Echo 1	Echo 2
Mode 1 uses contact transducer	The back echo is usually the negativeelectrode. However, in specialapplications where low acousticimpedance materials bonded to highacoustic impedance materials are measured (eg, plastic or rubber isadhered to the metal), the echoes appear to be phase inverted.	Not applicable
Mode 2 uses a delay line transducer or a immersion transducer	When measuring materials with highimpedance such as metals andceramics, the interface echo is usuallypositive, while when measuring low-impedance materials like most plastics, the echo is negative.	The back-wall echo is typicallythe negative electrode unless it isfrom an interface between a lowacoustic impedance material anda high acoustic impedancematerial that are bonded together.
Mode 3 uses a delay line transducer or a immersion transducer	For high impedance materials, theinterface echo is usually positive.	The back echo is usually thenegative electrode. However, inspecial measurementapplications for some irregulargeometry materials, the bottomecho is set to the positiveelectrode due to the phasedistortion causing the positiveelectrode of the bottom echo tobe clearer than the negativeelectrode.

Connecting Cable

5PØ10 for TIME®211 series

5PØ10/90° for for TIME®211 series, TIME®213 series

7PØ6 for for TIME⁸211 series, TIME⁸2130

TSTU32 for TIME*2134

SZ2.5P for for TIME[®]211 series

ZW5P for TIME*2132

Technical Specification

Transducer	Feature	Testing range	Contacting diameter	Frequency	Tested surface temperature
5РФ10	Standard straight	1.2~225.0mm(steel)	10mm	5MHz	-10°C~+60°C
5PΦ10/90°	Standard angle	1.2~225.0mm(steel)	10mm	5MHz	-10°C~+60°C
7РФ6	Small diameter	0.75~60mm, 15×2.0mm (steel)	6mm	7MHz	-10°C~+60°C
ZW5P	High-temperature	4.0-80.0mm(steel)	12mm	5MHz	-10°C~+300°C
SZ2.5P	High penetration	3.0-300.0mm(steel)	12mm	2.5MHz	-10°C~+60°C
TSTU32	High penetration	5.0~40.0mm (cast iron)	22mm	2MHz	-10°C~+60°C

Guideline to standard velocity in materials

Metals (m/sec)			Non-metals (m/sec)				
Aluminum	6320	Nickel	5630	Acrylic resin	2730	Polyamide	2380
Brass	4640	Platinum	3960	Aluminum oxide	8700	Polyethylene	1900
Cast iron	4500	Silver	3600	Ceramic	5631	Polyurethane	1900
Copper	4700	Steel, mild	5900	Diamond	17500	Polystyrene	2400
Cadmium	2800	Steel, low carbon	5850	Epoxy resin	2650	Porcelain	5600
Chromium	6200	Steel, stainless	5790	Glass	5440	PVC	2400
Gold	3240	Tin	3320	Ice	3980	Rubber (butyl)	1900
Inconel	5720	Titanium	6070	Neoprene	1600	Rubber (soft)	1450
Iron	5900	Tungsten carbon	5650	Nylon	2620	Rubber (vulc.)	2300
Lead	2200	Tungsten	5400	Paraffin	2200	Silicone rubber	948
Manganese	4700	Zinc	4170	Perspex	2850	Teflon	1350
Magnesium	6310	Zirconium	4650	Water glass	2350	Water (20°C)	1480

Applications

500℃ Steam Pipe

500℃ Tank

Grey Cast Iron Material

Curved Surface of Stainless Steel Valve Stamping Parts

Glass

Steel Tanker

300℃ Tank

Hull Inspection

60mm Thickness Rubber Tires

Steel/Stainless Steel Composite Pipe

Paint Thickness Test of FRP Pipe Inner Wall

FRP Sulfuric Acid Tank